

Abstracts

Optimization of distributed MEMS phase shifters

N.S. Barker and G.M. Rebeiz. "Optimization of distributed MEMS phase shifters." 1999 MTT-S International Microwave Symposium Digest 99.1 (1999 Vol. I [MWSYM]): 299-302 vol.1.

The design and optimization of a 0-60 GHz distributed MEMS true-time delay phase shifter is presented with theory verified by experimental results. The phase shifters are fabricated on 500 μm quartz with a fixed total CPW width of 300 μm . Three lines with center conductor widths of 50, 100, and 150 μm have been fabricated. The line with a 100 μm center conductor width is shown to be optimal for phase shift per dB loss. The measured results demonstrate 70/spl deg//dB at 40 GHz and 900/dB at 60 GHz. The current design, with $C_{\text{max}}/C_{\text{min}}=1.17$, is capable of producing 360/spl deg/ phase shift at 40 GHz with 5.1 dB loss and at 60 GHz with 4 dB loss which is state-of-the art performance for millimeter-wave phase shifters. Also, it is shown that if a $C_{\text{max}}/C_{\text{min}}=1.3$ can be achieved, then the performance increases to 1000/dB at 40 GHz.

[Return to main document.](#)